organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

3-Fluoro-12*H*-benzimidazo[2,1-*b*][1,3]benzothiazin-12-one

Zhiming Wang,^a Bin Yu,^a Xiuqin Zhang,^b* Yuan Cui^a and Xiaoqiang Sun^a

^aSchool of Petrochemical Engineering, Changzhou University, Changzhou, Jiangsu 213164, People's Republic of China, and ^bHigh Technology Research Institute of Nanjing University, Changzhou 213162, People's Republic of China Correspondence e-mail: wzmmol@hotmail.com

Received 25 November 2011; accepted 21 December 2011

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.003 Å; R factor = 0.036; wR factor = 0.106; data-to-parameter ratio = 11.6.

In the title compound, $C_{14}H_7FN_2OS$, prepared by the reaction of 2-bromo-4-fluorobenzoyl choride with 2-mercaptobenzimidazole, the four-membered fused-ring system is essentially planar [maximum deviation from the mean plane = 0.035 (2) Å]. The crystal packing is stabilized by weak intermolecular π - π [minimum ring centroid–centroid separation = 3.509 (7) Å], weak C-F··· π [F···centroid = 3.4464 (17) Å, C-F···centroid = 97.72 (11)°] and C-O·· π [O···centroid = 3.5230 (16) and 3.7296 (17) Å, C-O··· centroid = 86.40 (10) and 86.25 (10)°] interactions and weak intermolecular C-H···N hydrogen bonds.

Related literature

For general background to spiranes, see: Dawood & Abdel-Wahab (2010); Dolbier *et al.* (1994); Mavrova *et al.* (2010); Sekar *et al.* (2011).

Experimental

Crystal data C₁₄H₇FN₂OS

 $M_r = 270.28$

Monoclinic, $P2_1/c$	Z = 4
a = 9.5027 (12) Å	Mo $K\alpha$ radiation
b = 7.0759 (9) Å	$\mu = 0.29 \text{ mm}^{-1}$
c = 16.931 (2) Å	T = 293 K
$\beta = 94.375 \ (3)^{\circ}$	$0.20 \times 0.18 \times 0.15 \text{ mm}$
$V = 1135.1 (2) \text{ Å}^3$	
Data collection	
Bruker SMART CCD area-detector	5987 measured reflection

Bruker Shiritti COD urea detector	by measured reneedions
diffractometer	1989 independent reflections
Absorption correction: multi-scan	1772 reflections with $I > 2\sigma(I)$
(SADABS; Bruker, 2000)	$R_{\rm int} = 0.031$
$T_{\min} = 0.944, \ T_{\max} = 0.958$	

Refinement

 $\begin{array}{ll} R[F^2 > 2\sigma(F^2)] = 0.036 & 172 \text{ parameters} \\ wR(F^2) = 0.106 & H\text{-atom parameters constrained} \\ S = 1.00 & \Delta\rho_{\max} = 0.31 \text{ e } \text{\AA}^{-3} \\ 1989 \text{ reflections} & \Delta\rho_{\min} = -0.33 \text{ e } \text{\AA}^{-3} \end{array}$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdots A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$C14-H14\cdots N1^{i}$	0.93	2.58	3.359 (2)	141
Symmetry code: (i) x.	$-v + \frac{1}{2}, z + \frac{1}{2}$			

Data collection: *SMART* (Bruker, 2000); cell refinement: *SAINT* (Bruker, 2000); data reduction: *SAINT*; program(s) used to solve structure: *SHELXTL* (Sheldrick, 2008); program(s) used to refine structure: *SHELXTL*; molecular graphics: *SHELXTL*; software used to prepare material for publication: *SHELXTL*.

This work was supported financially by the Priority Academic Program Development of Jiangsu Higher Education Institutions.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: DS2160).

References

- Bruker (2000). SAINT, SMART and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Dawood, K. M. & Abdel-Wahab, B. F. (2010). Chem. Heterocycl. Compd, 46, 255–278.
- Dolbier, W. R. Jr, Burkholder, C., Abboud, K. A. & Loehle, D. (1994). J. Org. Chem. 59, 7688–7695.
- Mavrova, A. T., Vuchev, D., Anichina, K. & Vassilev, N. (2010). Eur. J. Med. Chem. 45, 5856–5861.
- Sekar, R., Srinivasan, M., Marcelis, A. T. M. & Sambandam, A. (2011). *Tetrahedron Lett.* 52, 3347–3352.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

supplementary materials

Acta Cryst. (2012). E68, o390 [doi:10.1107/S1600536811054948]

3-Fluoro-12*H*-benzimidazo[2,1-*b*][1,3]benzothiazin-12-one

Z. Wang, B. Yu, X. Zhang, Y. Cui and X. Sun

Comment

The chemistry of 2-mercaptoimidazole or 2-mercaptobenzimidazole has attracted much attention of many synthetic chemists owing to the occurrence of these ring systems in various biologically important compounds (Dawood & Abdel-Wahab, 2010; Mavrova *et al.*, 2010). In the past decades, most of these investigations were carried out with imidazole derivatives (Dolbier *et al.*, 1994; Sekar *et al.*, 2011). We herein present the structure of the title compound $C_{14}H_7FN_2OS$, prepared from the reaction of 2-bromo-4-fluorobenzoyl choride with 2-mercaptobenzimidazole.

In the crystal structure, the title compound adopts an essentially planar conformation (Fig. 1), with the maximum atom deviation from the least-squares plane to the four-membered fused-ring system = 0.035 (2) Å. The dihedral angles between the benzimidazole ring (N1–C7) and thiazine ring (S1–C10) = 0.74 (8)°, the benzene ring (C9–C14) and thiazine ring (S1–C10) = 1.00 (4)° and the benzimidazole ring (N1–C7) and benzene ring (C9–C14) = 0.03 (8)°.

The crystal packing is stabilized by weak interactions: (1) intermolecular π - π interactions: (*a*) imidazole ring N1–C7 (ring 1) and benzene ring C1–C6 (ring 2) of the benzimazole moiety [ring centroid separation = 3.673 (8) Å, symmetry code (i)x+1,-y+2, -z]; (*b*) between thiazine ring S1–C10 (ring 3) and S1–C10ⁱ = 3.856 (5) Å; (*c*) between ring 3…and ring 2ⁱ = 3.509 (7) Å; (2) C—O… π interactions [C(13)—O(1)…Cg2, C(13)—O(1)…Cg3] and C—F… π interactions [C(2)—F(1)…Cg4]; (3) intermolecular C—H…N hydrogen bonds [C(6)—H(6)…N(2)].

Experimental

An oven-dried Schlenk tube was charged with a magnetic stirring bar, CuI (0.05 mmol), 1,10-phenanthroline (0.10 mmol), Cs_2CO_3 (0.50 mmol), and 2-mercaptobenzimidazole. The Schlenk tube was capped, and then evacuated and backfilled with N₂ (3 times), then under a positive pressure of N₂, a solution of 2-bromo-4-fluorobenzoyl choride (0.75 mmol) in touene (2 ml, freshly distilled from sodium) was added dropwise *via* syringe, and the mixture was pre-stirred for 1 h at room temperature. The reaction mixture was then stirred at 100 °C. After the reaction was completed, the mixture was cooled to room temperature, passed through Celite and rinsed with 30 ml of CH₂Cl₂. The combined filtrate was concentrated and purified by flash chromatography to give a white solid (93% yield). Single crystals of the title compound suitable for X-ray diffraction were obtained by evaporation of a petroleum ether–chloroform solution.

Refinement

All the H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms, with C—H = 0.93 Å, with $U_{iso}(H) = 1.2 U_{eq}(C)$

3-Fluoro-12*H*-benzimidazo[2,1-*b*][1,3]benzothiazin-12-one

F(000) = 552 $D_{\rm x} = 1.582 \text{ Mg m}^{-3}$

 $\theta = 2.4-29.8^{\circ}$ $\mu = 0.29 \text{ mm}^{-1}$ T = 293 KBlock, colourless $0.20 \times 0.18 \times 0.15 \text{ mm}$

Mo K α radiation, $\lambda = 0.71073$ Å Cell parameters from 3848 reflections

Crystal data
C ₁₄ H ₇ FN ₂ OS
$M_r = 270.28$
Monoclinic, $P2_1/c$
Hall symbol: -P 2ybc
a = 9.5027 (12) Å
<i>b</i> = 7.0759 (9) Å
<i>c</i> = 16.931 (2) Å
$\beta = 94.375 \ (3)^{\circ}$
$V = 1135.1 (2) \text{ Å}^3$
Z = 4

Data collection

Bruker SMART CCD area-detector diffractometer	1989 independent reflections
Radiation source: fine-focus sealed tube	1772 reflections with $I > 2\sigma(I)$
graphite	$R_{\rm int} = 0.031$
phi and ω scans	$\theta_{\text{max}} = 25.0^{\circ}, \ \theta_{\text{min}} = 2.4^{\circ}$
Absorption correction: multi-scan (<i>SADABS</i> ; Bruker, 2000)	$h = -9 \rightarrow 11$
$T_{\min} = 0.944, \ T_{\max} = 0.958$	$k = -8 \rightarrow 8$
5987 measured reflections	$l = -20 \rightarrow 18$

Refinement

Primary atom site location: structure-invariant direct methods
Secondary atom site location: difference Fourier map
Hydrogen site location: inferred from neighbouring sites
H-atom parameters constrained
$w = 1/[\sigma^2(F_o^2) + (0.0611P)^2 + 0.4006P]$ where $P = (F_o^2 + 2F_c^2)/3$
$(\Delta/\sigma)_{\rm max} < 0.001$
$\Delta \rho_{max} = 0.31 \text{ e} \text{ Å}^{-3}$
$\Delta \rho_{min} = -0.33 \text{ e} \text{ Å}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Ζ	$U_{\rm iso}$ */ $U_{\rm eq}$
S1	-0.14487 (5)	0.16939 (8)	0.36622 (3)	0.0538 (2)
F1	-0.43167 (13)	0.1082 (2)	0.59933 (8)	0.0691 (4)
01	0.19345 (15)	0.3338 (2)	0.54945 (8)	0.0550 (4)
N1	0.08266 (18)	0.2319 (2)	0.28889 (9)	0.0512 (4)
N2	0.12490 (15)	0.2778 (2)	0.42060 (8)	0.0386 (3)
C1	0.4856 (2)	0.4053 (3)	0.36667 (13)	0.0549 (5)
H1	0.5742	0.4478	0.3860	0.066*
C2	0.3838 (2)	0.3749 (3)	0.41907 (12)	0.0478 (4)
H2	0.4024	0.3929	0.4733	0.057*
C3	0.2520 (2)	0.3161 (2)	0.38695 (11)	0.0409 (4)
C4	0.2239 (2)	0.2870 (3)	0.30570 (11)	0.0458 (4)
C5	0.3284 (2)	0.3134 (3)	0.25403 (12)	0.0570 (5)
H5	0.3112	0.2914	0.2000	0.068*
C6	0.4596 (2)	0.3741 (3)	0.28586 (13)	0.0600 (5)
H6	0.5314	0.3942	0.2525	0.072*
C7	0.0288 (2)	0.2291 (2)	0.35679 (10)	0.0429 (4)
C8	0.0987 (2)	0.2875 (2)	0.50112 (10)	0.0404 (4)
C9	-0.04393 (18)	0.2395 (2)	0.52280 (10)	0.0387 (4)
C10	-0.1557 (2)	0.1855 (2)	0.46872 (11)	0.0420 (4)
C11	-0.2867 (2)	0.1387 (3)	0.49526 (12)	0.0474 (5)
H11	-0.3609	0.0999	0.4599	0.057*
C12	-0.3033 (2)	0.1512 (3)	0.57463 (12)	0.0496 (5)
C13	-0.1972 (2)	0.2037 (3)	0.62965 (12)	0.0517 (5)
H13	-0.2121	0.2090	0.6833	0.062*
C14	-0.0687 (2)	0.2480 (3)	0.60323 (11)	0.0446 (4)
H14	0.0043	0.2848	0.6397	0.054*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U ³³	U^{12}	U^{13}	U^{23}
S1	0.0482 (3)	0.0744 (4)	0.0365 (3)	-0.0045 (2)	-0.0113 (2)	-0.0035 (2)
F1	0.0542 (7)	0.0824 (9)	0.0723 (8)	-0.0065 (6)	0.0150 (6)	-0.0017 (7)

supplementary materials

01	0.0544 (8)	0.0695 (9)	0.0387 (7)	-0.0113 (7)	-0.0121 (6)	-0.0058 (6)
N1	0.0585 (10)	0.0611 (10)	0.0325 (8)	0.0036 (8)	-0.0060 (7)	0.0026 (7)
N2	0.0429 (8)	0.0397 (8)	0.0319 (7)	0.0020 (6)	-0.0068 (6)	-0.0009 (6)
C1	0.0490 (11)	0.0546 (11)	0.0610 (12)	0.0014 (9)	0.0031 (9)	0.0037 (9)
C2	0.0474 (10)	0.0477 (10)	0.0475 (10)	0.0006 (8)	-0.0014 (8)	-0.0001 (8)
C3	0.0469 (10)	0.0344 (8)	0.0407 (9)	0.0051 (7)	-0.0021 (8)	0.0031 (7)
C4	0.0537 (11)	0.0430 (9)	0.0399 (10)	0.0074 (8)	-0.0024 (8)	0.0059 (8)
C5	0.0690 (14)	0.0596 (12)	0.0425 (11)	0.0118 (10)	0.0046 (10)	0.0067 (9)
C6	0.0596 (13)	0.0646 (13)	0.0573 (13)	0.0074 (10)	0.0135 (10)	0.0108 (10)
C7	0.0491 (10)	0.0412 (9)	0.0362 (9)	0.0041 (8)	-0.0105 (7)	0.0007 (7)
C8	0.0480 (10)	0.0377 (9)	0.0341 (9)	0.0022 (7)	-0.0070 (7)	-0.0009(7)
C9	0.0448 (10)	0.0336 (8)	0.0365 (9)	0.0050 (7)	-0.0052 (7)	0.0002 (7)
C10	0.0488 (10)	0.0368 (9)	0.0389 (9)	0.0059 (7)	-0.0066 (8)	0.0012 (7)
C11	0.0431 (10)	0.0449 (10)	0.0525 (11)	0.0021 (8)	-0.0075 (8)	0.0003 (8)
C12	0.0473 (11)	0.0447 (10)	0.0572 (12)	0.0039 (8)	0.0069 (9)	0.0030 (8)
C13	0.0619 (12)	0.0507 (11)	0.0425 (10)	0.0065 (9)	0.0053 (9)	-0.0003 (8)
C14	0.0507 (10)	0.0443 (9)	0.0378 (9)	0.0050 (8)	-0.0046 (8)	-0.0012 (7)

Geometric parameters (Å, °)

S1—C7	1.723 (2)	C4—C5	1.385 (3)
S1-C10	1.7501 (19)	C5—C6	1.388 (3)
F1—C12	1.354 (2)	С5—Н5	0.9300
O1—C8	1.214 (2)	С6—Н6	0.9300
N1—C7	1.294 (2)	C8—C9	1.471 (3)
N1—C4	1.406 (3)	C9—C10	1.402 (2)
N2—C3	1.401 (2)	C9—C14	1.401 (2)
N2—C7	1.403 (2)	C10—C11	1.395 (3)
N2—C8	1.406 (2)	C11—C12	1.368 (3)
C1—C2	1.378 (3)	C11—H11	0.9300
C1—C6	1.389 (3)	C12—C13	1.371 (3)
С1—Н1	0.9300	C13—C14	1.369 (3)
C2—C3	1.390 (3)	C13—H13	0.9300
С2—Н2	0.9300	C14—H14	0.9300
C3—C4	1.397 (3)		
C7—S1—C10	101.85 (9)	N1—C7—S1	122.20 (14)
C7—N1—C4	105.11 (16)	N2—C7—S1	124.09 (14)
C3—N2—C7	105.38 (14)	O1—C8—N2	119.32 (17)
C3—N2—C8	127.34 (15)	O1—C8—C9	122.96 (16)
C7—N2—C8	127.28 (15)	N2—C8—C9	117.72 (15)
C2—C1—C6	121.9 (2)	C10—C9—C14	118.16 (17)
С2—С1—Н1	119.1	C10—C9—C8	124.53 (16)
С6—С1—Н1	119.1	C14—C9—C8	117.31 (16)
C1—C2—C3	116.76 (19)	C11—C10—C9	120.31 (17)
С1—С2—Н2	121.6	C11—C10—S1	115.18 (14)
С3—С2—Н2	121.6	C9—C10—S1	124.51 (15)
C2—C3—C4	121.90 (18)	C12-C11-C10	118.25 (18)
C2—C3—N2	132.68 (17)	C12—C11—H11	120.9
C4—C3—N2	105.41 (16)	C10-C11-H11	120.9

C5—C4—C3	120.66 (19)	F1—C12—C13		118.95 (18)
C5—C4—N1	128.96 (19)	F1—C12—C11		117.57 (18)
C3—C4—N1	110.38 (17)	C13—C12—C11		123.47 (19)
C4—C5—C6	117.5 (2)	C12—C13—C14		117.93 (19)
C4—C5—H5	121.2	С12—С13—Н13		121.0
С6—С5—Н5	121.2	C14—C13—H13		121.0
C5—C6—C1	121.2 (2)	C13—C14—C9		121.85 (18)
С5—С6—Н6	119.4	C13—C14—H14		119.1
С1—С6—Н6	119.4	C9-C14-H14		119.1
N1—C7—N2	113.71 (17)			
C6—C1—C2—C3	-1.7 (3)	C10—S1—C7—N2		-0.75 (17)
C1—C2—C3—C4	0.7 (3)	C3—N2—C8—O1		0.0 (3)
C1—C2—C3—N2	-177.85 (18)	C7—N2—C8—O1		-179.37 (17)
C7—N2—C3—C2	178.39 (19)	C3—N2—C8—C9		-179.66 (15)
C8—N2—C3—C2	-1.1 (3)	C7—N2—C8—C9		0.9 (2)
C7—N2—C3—C4	-0.31 (18)	O1—C8—C9—C10		180.00 (17)
C8—N2—C3—C4	-179.83 (15)	N2-C8-C9-C10		-0.3 (2)
C2—C3—C4—C5	1.0 (3)	O1—C8—C9—C14		-0.2 (3)
N2—C3—C4—C5	179.83 (16)	N2-C8-C9-C14		179.46 (15)
C2—C3—C4—N1	-178.82 (16)	C14—C9—C10—C11		-1.1 (2)
N2—C3—C4—N1	0.06 (19)	C8-C9-C10-C11		178.63 (16)
C7—N1—C4—C5	-179.51 (19)	C14—C9—C10—S1		179.32 (13)
C7—N1—C4—C3	0.2 (2)	C8-C9-C10-S1		-0.9 (2)
C3—C4—C5—C6	-1.6 (3)	C7—S1—C10—C11		-178.27 (13)
N1—C4—C5—C6	178.15 (19)	C7—S1—C10—C9		1.29 (17)
C4—C5—C6—C1	0.6 (3)	C9-C10-C11-C12		1.5 (3)
C2-C1-C6-C5	1.0 (3)	S1-C10-C11-C12		-178.94 (14)
C4—N1—C7—N2	-0.5 (2)	C10-C11-C12-F1		178.98 (16)
C4—N1—C7—S1	179.82 (13)	C10-C11-C12-C13		-1.4 (3)
C3—N2—C7—N1	0.5 (2)	F1-C12-C13-C14		-179.48 (17)
C8—N2—C7—N1	-179.97 (16)	C11—C12—C13—C14		0.9 (3)
C3—N2—C7—S1	-179.78 (13)	C12—C13—C14—C9		-0.5 (3)
C8—N2—C7—S1	-0.3 (2)	C10—C9—C14—C13		0.6 (3)
C10—S1—C7—N1	178.93 (15)	C8—C9—C14—C13		-179.15 (16)
Hydrogen-bond geometry (Å, °)				
D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	D—H…A

2.58

3.359 (2)

141

C14—H14···N1ⁱ 0.93 Symmetry codes: (i) x, -y+1/2, z+1/2.

